Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium
نویسندگان
چکیده
The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.
منابع مشابه
Investigating Deinococcus radiodurans RecA protein filament formation on double-stranded DNA by a real-time single-molecule approach.
With the aid of an efficient, precise, and almost error-free DNA repair system, Deinococcus radiodurans can survive hundreds of double-strand breaks inflicted by high doses of irradiation or desiccation. RecA of D. radiodurans (DrRecA) plays a central role both in the early phase of repair by an extended synthesis-dependent strand annealing process and in the later more general homologous recom...
متن کاملThe RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways.
The RecA protein of Escherichia coli, and all filament-forming homologues identified to date, promote DNA strand exchange by a common, ordered pathway. A filament is first formed on single-stranded DNA, followed by uptake of the duplex substrate. These proteins are thereby targeted to single-strand gaps and tails where recombinational DNA repair is required. The observed course of DNA strand ex...
متن کاملRecombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans.
Interplasmidic and intrachromosomal recombination in Deinococcus radiodurans has been studied recently and has been found to occur at high frequency following exposure to ionizing radiation. In the current work, we document plasmid-chromosome recombination following exposure of D. radiodurans to 1.75 Mrad (17.5 kGy) 60Co, when the plasmid is present in the cell at the time of irradiation. Recom...
متن کاملIdentification of a Multiprotein Dna Metabolic Complex from a Radioresistant Bacterium Deinococcus Radiodurans
Deinococcus radiodurans R1 (DEIRA) a member of Deinococcae family can survive ~12 kGy dose of γ radiation which can generate about 200 double strands and 3000 single strand breaks per genome. An efficient DNA strand break repair, contributes maximum to the radioresistance of Deinococcus radiodurans. Distinction in DNA strand break repair from others seems to lie in the mechanism of action of DN...
متن کاملPhosphorylation of Deinococcus radiodurans RecA Regulates Its Activity and May Contribute to Radioresistance.
Deinococcus radiodurans has a remarkable capacity to survive exposure to extreme levels of radiation that cause hundreds of DNA double strand breaks (DSBs). DSB repair in this bacterium depends on its recombinase A protein (DrRecA). DrRecA plays a pivotal role in both extended synthesis-dependent strand annealing and slow crossover events of DSB repair during the organism's recovery from DNA da...
متن کامل